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Abstract
　　 This post-lesson video-stimulated interview study of the creative development of mathematical 
insight by a Year 6 student—during group activity in class—examines whether scaffolding 
occurred, and if so, what was its nature? This capable mathematics student who generally disliked 
school mathematics, became intensely engaged both intellectually and affectively during a 
problem-solving task in the research period.  The task, its implementation, group interactions, and 
teacher actions all influenced, but did not cause his insight development.  Scaffolding actions that 
differed in nature to those identified by Bruner did occur.  This study could inform researchers, 
teachers, and professional learning providers intending to deepen mathematical understandings 
and increase student interest in mathematics. 
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INTRODUCTION

　　 The value of problem solving for enabling deep learning of mathematics has long been recognised 
(Schoenfeld, 1992) as has the value of mathematical discourse in whole class and group activity (Smit, van 
Eerde, & Bakker, 2013; Wegerif, 2006), and mathematical thinking that develops (Hino, 2007).  Curricula in 
the USA (Kaur & Yeap, 2009; Kilpatrick, 2002), China (Dello-Iacovo, 2009), Korea (Kwon & Cho, 2012), 
and Australia (Masters, 2013) for example, recognise the value of problem solving.  The high quality of 
Japanese Lesson Study (JLS) as an approach that leads to deep mathematics learning has long been recognised 
(Stigler & Hiebert, 1997).  The Engaged to Learn Approach (E2L) employed in this study has various 
features, and outcomes, consistent with JLS but has other features and outcomes that are not.  In order to 
familiarise the reader with E2L which will be less familiar to most readers than JLS, similarities and 
differences between the development and purposes of these approaches to classroom mathematics learning 
are now discussed.  Features of each approach are compared and contrasted in the Research Context and 
Discussion sections when elaborating the nature of E2L This study examines the scaffolding of creative 
mathematical thinking that is accompanied by high positive affect.  

Japanese Lesson Study
　　 For over six decades, educators in Japan have focused on ‘mathematical thinking’ which is considered 
different to problem solving (Hino, 2007).  Koyama (2019) illustrated mathematical thinking during whole 
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class activity, where a teacher, probed student ideas on how a triangle is defined, and used pre-prepared 
counterexamples to “ ‘shake the students’ recognition of a triangle” and to “deepen their understanding of the 
definition” (p. 43).  Mathematical thinking is “considered relevant in creating and forming mathematical 
concepts, rules and algorithms” (Hino, 2007, p. 504).  Problem solving on the other hand was considered 
appropriate for consolidation after rules and concepts had been developed.  Open-ended questions, 
implemented before formal instruction, were more frequently employed as enrichment activities.  They were 
found to “… arouse students’ interest and foster … mathematical views and thinking” (Hino, 2007, p. 508). 
　　 JLS is an approach developed to support teachers experiencing difficulties implementing open-ended 
questions (Hino, 2007).  It includes teacher participation in professional conversations, and resource 
development associated with developing the mathematical thinking of students (Hino, 2007).  Open. ended 
tasks undertaken during JLS are observed by other teachers in the Lesson Study team.  These team members 
contribute ideas during the development of the lesson plan.  Shimizu (2009 in Funahashi & Hino, 2014, 
p. 424) emphasised that ‘‘valuing students’ thinking as necessary elements to be incorporated into the 
development of a lesson is a key to the approach taken by Japanese teachers.’’ Further research of JLS is 
encouraged to help to overcome difficulties Japanese teachers still experience in implementing open ended 
tasks (Funahashi & Hino, 2014; Koyama, 2019).  The study reported herein could also have implications for 
teachers wanting to further develop students’ mathematical thinking including the subset of creative 
mathematical thinking because it examines the nature of interactive processes associated student controlled 
mathematical thinking during students’ creative development of mathematical insight accompanied by high 
positive affect, which occurs in a ‘flow’ state (Csikszentmihalyi & Csikszentmihalyi, 1992; Williams, 2002a) 
during mathematical problem.  See for example Barnes (2000) and Williams (2002a, 2010) for illustrations 
of students who entered a flow state while developing mathematical insight within E2L (initially termed 
Class Collaboration).

Engaged to Learn Approach (E2L)
　　 Williams, initially began to develop her group problem solving approach in her mathematics classes in 
the early to mid-nineteen eighties, to provide more opportunities for students, who struggled with mathematics, 
to engage with the subject (Williams, 2002c).  It has since been taken up by various schools and individual 
teachers in various forms (e.g., Clarke, Duncan, & Williams, 2014).  Williams found that E2L engaged not 
only students who struggled with mathematics but also other students, including highly capable students who 
wanted to understand mathematics deeply rather than only learn rules and procedures (Williams, 2000).  
Different to JLS where there is one key purpose, to develop students’ mathematical thinking, E2L, has 
multiple, equally valued intentions.  These are to increase inclusivity through an emotionally safe learning 
environment, to enable students to develop what were initially unfamiliar mathematical ideas, and to develop 
positive affect around the learning of mathematics (Williams, 2014).
　　 Similar to Hino’s (2007) descriptions of open-ended tasks employed before formal teaching in JLS, E2L 
employs accessible but complex unfamiliar problem-solving tasks, that are implemented prior to formal 
introduction of a topic.  Different to JLS, the teacher in E2L does not provide mathematical input during task 
exploration.  Mathematical input by the teacher occurs when student work on the problem-solving task has 
finished.  The teacher then draws together, elaborates on, and extends the ideas of the students as needed to 
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formally develop the topic.  This enables student autonomy and spontaneity in developing mathematical 
ideas—crucial to enabling flow (Csikszentmihalyi & Csikszentmihalyi, 1992; Williams, 2002a). 
　　 High level positive affect accompanying mathematical thinking during problem solving and modeling 
(e.g., Galbraith, Stillman, & Brown, 2010; Williams, 2010) also has additional benefits.  It has been found to 
build optimism (resilience) (Seligman, 1995; Williams, 2010) over time and optimism has been found to 
increase problem solving capacity (Stillman et al., 2009; Williams, 2010), and buffer against depression 
(Seligman, 1995).  Recent research from Japan (Inoue, Asada, Maeda, & Nakamura, 2019) that studied the 
actions of eight teachers identified as highly effective teachers of inquiry based learning found that these 
teachers made decisions based not only on developing the mathematical thinking of students, but also on 
“ ‘students’ whole person development and creat[ing] a collaborative and inclusive learning community” 
(p. 376).  This points to the usefulness of the study reported herein for further reflections on JLS.  Mayer’s 
(1978, in Csikszentmihalyi, 1992) finding that student enjoyment of a course was a better predictor of final 
grades than previous scholastic achievement or aptitude supports the usefulness of the findings reported 
herein for mathematics teacher development more generally.  This study, with its microanalysis of classroom 
and group interactions during the creative mathematical thinking of one Year 6 elementary school student 
provides insights into some of the types of social interactions that can enable such processes.

THEORETICALLY FRAMING THIS STUDY

　　 Constructs in this section provide the theoretical lenses through which the data is analysed in this study: 
flow, creative mathematical thinking, Bruner’s (1986) conceptualisation of scaffolding. 

Flow
　　 Flow is a state in which creative activity is accompanied by high positive affect (Csikszentmihalyi, 
1992).  It can occur when a group or individual spontaneously set themselves a challenge that is almost out 
of reach and develop new skills (Csikszentmihalyi, 1992) and concepts (Williams, 2002a) to overcome it.  It 
occurs in many domains (e.g., art, sport, weaving) including where groups of Japanese Bosozoku bike riders 
develop new skills to escape the police as they terrorise the town each evening (Sato, 1992).  Conditions for 
flow include autonomous setting of a challenge almost out of reach that requires the development of new 
skills to overcome it.  During flow people lose of all sense of time, self, and the world around as all their 
energies are focused on the task at hand. 
　　 Flow can occur during the creative development of insight during mathematical problem solving, and 
in that case, both skills and concepts develop (Williams, 2002a).  Flow conditions specific to mathematical 
problem solving include students:
　•	 Discovering an unfamiliar mathematical complexity 
　•	 Inclining to explore it
　•	 Spontaneously formulating a question to focus that exploration (a challenge to overcome)
　•	 Developing new skills and concepts to answer that question (Williams, 2007).
　　 Thought processes associated with creative mathematical activity have been described in different but 
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consistent ways (Krutetskii, 1968/76, p. 292; Chick, 1998, p. 17; Csikszentmihalyi, 1997, p. 65 in Williams, 
2007, p. 70).  Creative mathematical thinking involves “not only choosing the cues and concepts — and 
often unexpected cues and concepts — but even the very question” (Chick), and is “not so much direct 
attempts at solving the problem as a means of thoroughly investigating it, with auxiliary information being 
extracted from each trial” (Krutetskii).  There is a cumulative effect of small discoveries: “You may have 
only one big insight, but as you try to elaborate, as you try to explain what the insight is, you have small 
insights coming up all the time too” (Csikszentmihaly). 
　　 The term ‘high positive affect’ as employed in this study has been developed from a combination of 
Csikszentmihalyi’s (1992) properties of flow, and Quilliam’s (1995) body language indicators of several 
properties.  Table 1 displays the properties of flow, indicators of these, elaboration of each, and the codes 
used to identify each.

Property Indicators Elaboration Code

Lose all sense of time, 
self, and world around

Unaware of anything other than 
task at hand

Does not hear interruptions U  Unaware

Energies focused on 
task at hand

Eyes on task and / or group. Ey  Eyes

Body directed towards task 
activity.

D  Direction

Participates verbally / in writing / 
listening

P  Participate

Creative ideas 
developing

Connect to ideas of others Finish their sentence
Extend their idea

L  Latch

Insights develop Exclamation of excitement, 
surprise or pleasure on 
Emphasis words

Ex  Exclaim

Table 1 � Body Language/ Voice Articulation Framework: Indicators of high positive affect developed from 
Csikszentmihaly (1992) and Quilliam (1995)

　　 Positive affect can exist where few of these indicators in Table 1 are visible.  What the EyDUPLEx 
Body Language including Voice Articulation Framework does offer is evidence of some but not necessarily 
all instances where positive affect occurred.  Changes in the indicators displayed can raise awareness of 
changes in affective state.

Creative mathematical thinking
　　 Creative mathematical activity, for the purposes of this study, is autonomous, spontaneous mathematical 
activity that may be influenced but is not caused by sources external to those exploring.  Spontaneity which 
has previously been linked to student learning, is not considered to occur in the “absence of elements with 
which the student interacts” but rather to “refer to the non-causality of teaching actions … the self-regulation 
of the students when interacting” within “the student’s frame of reference” (Steffe & Thompson, 2000, 
p. 291). 
　　 Actions of Vygotsky’s ‘expert other’ eliminate spontaneity of student thinking with actions such as 
‘telling’ and ‘hinting’.  Such activity is not within the student’s frame of reference (the student does not select 
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the focus, the mathematics to use, how to use it, and whether the mathematics generated is reasonable) but 
is rather undertaking learning the expert other is controlling.
　　 E2L was developed to enable autonomous, spontaneous student activity to provide frequent opportunities 
for creative mathematical thinking during flow.  JLS, on the other hand, with the inclusion of explicit teacher 
guiding and teacher linking of mathematical ideas for the purposes of eliciting students’ mathematical 
thinking limits opportunities for spontaneity, thus creative mathematical thinking during these times.  Where 
JLS develops mathematical reasoning skills during these teacher guided episodes, in E2L, the teacher draws 
attention to such skills as the students communicate their thinking to the class. 
　　 For the purposes of this study, processes associated with developing ‘mathematical insight’ are 
examined through the lens of Abstracting in Context (AiC) (Dreyfus, Hershkowitz, & Schwarz, 2001).  AiC 
involves the process of constructing something mathematically profound that was not apparent previously.  
Williams (2007) integrated (Krutetskii, 1976) ‘mental activities’ with the ‘observable cognitive elements’ of 
AiC (Recognizing (R), Building-with (BW), and Constructing (C)) to examine complex student thinking.  She 
operationalized the spontaneity of these observable cognitive elements through the sources of the social 
elements (Control, Explanation, Elaboration, Query, Agreement, and Attention) (Dreyfus et al., 2001) that 
influenced them.  Where social elements that include new mathematical ideas (e.g., explanation, elaboration, 
query, and affirmation) are ‘internal’ (in this case sourced from individual student), the observable cognitive 
elements are spontaneous thus the mathematical thinking is creative (Williams, 2007).  Spontaneous 
‘observable cognitive elements’ are described as follows:
Spontaneous recognizing: student identified mathematics to use, or student identified mathematics within a 
context. 
Spontaneous building-with: student employing known mathematics in new combinations / sequences 
(Dreyfus et al., 2001): simple analyse (breaking into component parts to examine); synthetic-analysis 
(simultaneous analyses of two of more representations, methods, and / or features); evaluative-analysis 
(judgment arising from synthetic-analysis) (Krutetskii, 1976; Williams, 2007). 
Spontaneous constructing: student synthesis (insight) and/or recognizing usefulness of an insight for 
another purpose (Dreyfus et al., 2001; Krutetskii, 1976). 

Scaffolding
　　 The term ‘scaffolding’ as employed in the building industry is a temporary structure built on the outside 
of a building to support the builders as they climb higher (Fernández, Wegerif, Mercer, & Rojas-Drummond, 
2001).  That structure is not part of the building constructed so can be removed when building is completed.  
In education including mathematics education scaffolding is a metaphor for support to learning that enables 
the “child or novice to solve a problem, carry out a task or achieve a goal which would be beyond his 
unassisted efforts” (Wood, Bruner, & Ross, 1976, p. 90). 
　　 In this paper, in defining scaffolding of creative mathematical activity, both the common language 
meaning of scaffolding and D Wood, Bruner, and Ross’ definition are combined as follows:

“scaffolding creative mathematical thinking is enabling the student to develop mathematical insights that would 
be beyond his unassisted effort, where the scaffold must be such that when removed the mathematical construction 
remains standing: mathematical input is not provided”.
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　　 Bruner (1986) examined the role of the ‘expert other’ (Vygotsky, 1978) who “demonstrates the task is 
possible”, instructs, shows, starts the task for the child, hints, provides ideas, and “asks leading questions” 
(van der Veer & Valsiner, 1994, p. 337) when an expert tutor supported a child who was building a required 
block construction.  Bruner also identified additional scaffolding actions, the tutor: “controlled the focus of 
attention”, “segmented [the] task to control the size and complexity of task”, and “set up the task so the child 
could recognize the solution and perform it later (even though he could neither use nor understand at time)” 
(Bruner, 1986, p. 75).  This study will examine scaffolding through the lenses of the expert other and Bruner’s 
additional scaffolding actions to find whether, and if so how, these scaffolding actions relate to a students’ 
creative development of mathematical insight during flow.  The analyses do not specifically focus on more 
recently identified scaffolding strategies such as: a) interactions with an individual, a group, a teacher, or the 
whole class (Smit et al., 2013); b) teacher actions within class and between classes (Smit et al., 2013); c) 
teacher encouraging of dialogue that increases the depth of student-student interactions (Wegerif, 2006); and 
d) teacher sequential processes such as diagnosis, responsiveness, and handover to independence (Smit et al., 
2013).  That said, the microanalyses undertaken are associated with such contexts. 

The Research Questions
　　 Given the potential usefulness of promoting creative mathematical activity with the accompanying high 
positive affect (Csikszentmihalyi & Csikszentmihalyi, 1992; Williams, 2002a) it is important to identify 
teacher actions that increase the frequency of such activity.  For this purpose, this study identifies a case in 
which a student appears to attain a flow state and examines his interactions, affective state, and evidence of 
his thought processes to find whether there were actions that scaffolded his insight development.  The 
research questions posed are: “Did this student experience a flow state?” “Were there scaffolding actions 
associated with his creative mathematical activity?” and if so, “What was the nature of these scaffolding 
actions?” 

RESEARCH METHODOLOGY

　　 This data is part of the final year of a three year longitudinal study of the role of optimism in group 
problem solving (see, Williams, 2014) and contributes to that research by examining other influences on 
mathematical problem solving activity.  The Research Design is an extension of the Learner’s Perspective 
Study Design (Clarke, 2002).

Context 
　　 This section includes descriptions of the school, the class, the subjects under focus, the task, and the 
pedagogical approach.

School and subjects
　　 This elementary school class was selected because twelve of the 24 students had not previously 
participated in the first two years of the broader research study.  It was considered that more explicit teacher 
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actions would occur to introduce these ‘new’ students to the classroom culture.  The researcher-as-teacher 
(RT, author) was the primary implementer of the task.  She team-taught with the class teacher (Mrs J) who 
was familiar with the E2L approach because she had participated in the research study the previous year.  RT 
and Mrs J are referred to collectively as teachers when differentiation between them is not necessary. 
　　 The focus student Jesse’s activity was studied as he participated with Clara, and Lexie in group problem 
solving in a composite Year 5/6 elementary school class in a Government schools in Australia.  This small 
group was selected for this study because there were indicators that Jesse developed mathematical insights.  
In addition, Jesse and Lexie usually did not engage with mathematics lessons but in this lesson, each 
displayed (individually) intense interest during this task.  This change in orientation to mathematics for these 
two students during this class was expected to provide greater opportunity to examine factors that influence 
the development of positive affect. 
　　 Clara and Jesse (but not Lexie) had participated in the E2L approach previously.  Clara was conscientious 
and focused in class, and during research tasks.  Mrs J described Lexie as frequently engaged in off task talk 
rather than focused on mathematics.  Jesse reported in his interview that he found ‘maths’ easy but that he 
was generally not interested in his ‘usual’ mathematics lessons.  In discussing the How Many Boxes Task in 
his interview, he stated: “I wanted to listen … If there is something enjoyable in it, I’ll listen, and I wanted 
to find all the combinations … … I have to be interested otherwise … I sort of just … fiddle!”.  Mrs J’s 
descriptions of Jesse during his usual mathematics classes were consistent with Jesse’s interview report.  She 
stated that Jesse was frequently late for class, and generally fidgeted and distracted others.  Jesse was on time 
for the second and third research lesson.  We teachers considered that Clara’s conscientious approach would 
help to involve Jesse and Lexie in the task.  In Lesson 2, an additional student, who unsuccessfully tried to 
distract group members, joined the group.  His activity was not relevant to the reported study.

Pedagogical approach: Engaged to Learn (E2L) 
　　 The Engaged to Learn Approach has previously been found to provide opportunities for flow conditions.  
It is employed before topics are ‘formally’ taught, for the purpose of building informal understandings that 
students can build upon later.  This exploratory process includes every group briefly reporting some of the 
ideas they develop to the class as a whole, several times during work with the task (without query or 
affirmation from expert others).  The student / group decide what they will use, or query in a later report.  
Given the nature of the task and approach which includes an expectation of justification when mathematical 
ideas are communicated, a ‘patchwork’ of understandings are developed and presented to the class to varying 
extents.  After the problem solving, the teacher explicitly draws on ideas from various groups in developing 
the topic of teacher focus (not part of this study).  These tasks frequently develop initial understandings 
associated with several topics and the teacher or students draw on these ideas as appropriate.  E2L consists 
of multiple cycles, with each cycle including activities that occur in the following order: 
　•	� Groups of 3-4 brainstorming [group roles (reader and timer, recorder, reporter, and encourager), intended 

to increase inclusivity, change after each report]
　•	� Multiple RT questions and comments of varying levels of complexity, with no requirement for students 

to consider them [occur after each group work interval to stimulate the development of reports] 
　•	� Groups priming reporters [intended to increase sharing of ideas, develop group understandings, and 
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keep reporter emotionally safe through group accountability]
　•	� Reports from each group [two class rules keep reporter emotionally safe: reporter cannot be asked 

questions beyond what was reported or contradicted while at the board.  Such questions / comments can 
be built into subsequent reports and contradictions presented in such contexts must be justified]. 

　　 There is an expectation is that teachers do not provide mathematical input associated with the 
mathematical structure the student/s are building during the exploratory process.  The intentions of the 
approach are to provide an inclusive environment in which students feel emotionally safe taking risks as they 
explore and communicate new mathematical ideas. 

Types of Tasks Employed Within E2L
　　 E2L requires the use of ‘conceptual tasks’, tasks intended to provide opportunities for students to 
develop mathematical understandings that were unfamiliar to them at the start of the task.  See Williams 
(2002b) for more detail on how such tasks are constructed to achieve this, yet are accessible to all class 
members.  Groups are constructed by the teacher.  Groups make decisions on what, and how, they will 
explore these tasks.  Groups report to the class each 10-15 minutes for approximately two minutes.  They 
decide what they will share with the rest of the class in their reports to the class.  As previously identified, 
the intention is not for students to finish the task, but rather for students to become familiar with new 
mathematical ideas within the topic under study.  Sometimes this mathematics is associated with more than 
one topic in the curriculum over the subsequent eighteen months. 

Task: How Many Boxes
　　 The purpose of this task is to informally build understandings associated with the internal structure of 
rectangular prisms composed of one cubic centimetre blocks.  Students are not explicitly directed or guided 
towards particular mathematics. 
　　 Mathematical ideas likely to develop in some form for various groups through the task include: 
　•	 “rectangular prisms are made up of layers (or verticals slices or columns) of blocks”, 
　•	 “the meaning of factors”, 
　•	 “the dimensions of the prism are factors of the total number of blocks in the prism give”,
　•	 “this is so because of the structure of blocks in the prism”, 
　•	� “the total number of blocks in the prism can be found by finding the number in a layer or vertical slice 

(by counting or by recognising the array) and multiplying by the total number of layers, or by finding 
the number of blocks in a column of blocks in a prism and multiplying by the number of columns”. 

　　 This task extended over three eighty-minute sessions.  This study focused within Lesson 1, Part 2, and 
Lesson 2, Part 1: “How many ‘our boxes’ contain exactly 24 1x1x1cm little blocks?” 
Lesson 1, Part 1:	 Examining features to identify ‘our boxes’ (rectangular prisms)
Lesson 1, Part 2: 	How many ‘our boxes’ contain exactly 24 1x1x1cm little blocks? 
Lesson 2, Part 1: 	�Continue to explore “How many ‘our boxes’ contain exactly 24 1x1x1cm little blocks?” 

With greater emphasis on “How do you know when you have got them all?” “Have you 
found any patterns?” “Why that pattern?”

Lesson 2, Part 2: 	�Students prepare for a game where each group tries to be the first to find the dimensions 
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and orientation of the ‘our box’ hidden in a colourful box.  They will be told the number 
of blocks in the ‘our box’ and each group can ask a question that has a Yes or No answer 
to help find the ‘our box’.  Students have 24 little blocks and can explore different ‘our 
boxes’ (with more or less than 24 blocks) and questions that might be useful to ask.  

Lesson 3: 	� Students play the game then play other versions of it.  For more information on different 
classes investigating this problem see for example, Williams (2007, 2014). 

　　 Soon after group work commenced, RT drew attention to ways of working and several possible areas 
of focus: “you are working out how to record what you find [so you can use the blocks] to make another one 
if you think there’s more that could be made”. “[Y]ou are working together” and “you are thinking about- 
what is the thinking you are doing to work this out because that’s what we’re really interested in- how you 
are working- what helps you to do it?” 
　　 As the group work progressed, teachers asked questions of individuals, groups, or the class to elicit 
more complex thinking.  Questions included: “How many can you make?”, “How do you know when you 
have got them all?”, “Can you make a mathematical argument for how you know when you have got them 
all?”, “Can you see any patterns?”, “Why does the pattern you have found work?” 
　　 This task, like other tasks in the broader study, was accessible at multiple levels of mathematical 
sophistication through multiple representations (e.g., concrete, diagrams, numerical, verbal, mathematical 
arguments).  The task was designed with opportunities for surprise which were expected to increase student 
inclination to explore (create flow conditions). 

Research design
Research timeline
　　 During Lesson 1, Part 2 and Lesson 2, Part 1 (How many ‘our boxes’ contain exactly 24 1x1x1cm little 
blocks?), two problem-solving cycles occurred over 2 consecutive lessons.  This study focuses primarily on 
five minutes in Lesson 1 (four short intervals of Jesse’s interactions with his group and his exploratory 
activity), and Jesse’s report to the class and teachers’ comments about it in Lesson 2, Part 1.

Data collection instruments 
　　 Four video cameras with audio leads to each group captured the activity of each group, and group 
reports to the class.  In addition, Jesse’s group’s microphone on their desk was still active during the reporting 
sessions, and teacher talk with the class as a whole.  Excerpts of lesson video and Jesse’s video-stimulated 
post-lesson interview after Lesson 2 captured Jesse’s exploratory activity and influences on it.  Teachers’ 
activity was captured on different cameras and microphones as they moved from group to group.  Student 
interactions, gestures, other body language, voice articulation, and the content of their reports assisted in 
identifying intervals of creative thinking, and insights developed.  This was achieved through attention to: 
‘observable cognitive elements’, ‘social elements’ influencing them, and accompanying indicators of affect 
(displayed in group interactions, reports, and student interviews).  Video-stimulated post-lesson discussions 
with Mrs J provided additional information. 
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Process of analysis 
　　 The four intervals identified in Lesson 1 were examined to identify cognitive, social, and affective 
elements.  The three more complex intervals were used to produce Interpretive Visual Displays (see Figures 
1, 3, 4) to make ‘visible’ Jesse’s thinking, its spontaneity, and teacher and student influences on it.  These 
displays captured Jesse’s, Clara’s and Lexie’s activity over time.  The five columns in the Interpretive Visual 
Displays show transcript line numbers [Column 1], times from start of lesson [Column 2], Jesse’s ‘observable 
cognitive elements’ (Recognizing, Building-with, Constructing) [Columns 3c, 3b, 3a from left to right], 
social elements Jesse responded to (from Lexie, Jesse, Clara, Teachers) [Columns 4a, 4b, 4c, 4d].  Influences 
on Jesse’s activity can be identified from the arrows pointing back from Jesse’s activity to what he responded 
to [Column 4].  Evidence of positive affect were identified through group interactions self-reports, body 
language, and voice articulation using Williams’ Framework of Quality of Experience (EyDUPLEx, 
Williams, 2003), see Column 5.  This framework is based on properties of flow (Csikszentmihalyi & 
Csikszentmihalyi, 1992) where people become so engaged that they lose all sense of time, self, and the world 
around because all energy is focused on the task at hand.  Column 5 (5a, 5b, 5c, 5d, 5e) display indicators of 
Jesse’s quality of experience through ‘eyes on task’ (Ey), ‘body directed towards task / group member/s’ (D), 
‘unaware of world around’ (U), ‘participating’ (P), ‘latching to talk of others’ or ‘cutting across interviewer’ 
with an urgency to respond (L), and intensity and exclamations articulated (Ex).  Column 6 contains group 
transcripts and other talk the group might have heard.  Complex cognitive activity occurring simultaneously 
with many indicators of high-quality experience can be used to identify possible flow states.
　　 Jesse had access to blocks, lesson video, and worksheets, as salient stimuli to add validity to his 
interview reconstructions (Nisbett & Wilson, 1977).  He controlled video selection and discussed what he 
thought was happening, and what he was thinking and feeling.  Probing questions asked by the interviewer 
(RT) included: “Can you tell me what you were thinking about there?” “You appear to be really thinking 
there.  Is that right?” These probes generated data about the mathematical content of Jesse’s thinking and his 
affective responses as he developed ideas.

ANALYSIS AND RESULTS 

Narrative: Jesse’s activity 
Jesse’s group activity in Lesson 1
　　 Jesse, Clara, and Lexie used trial and error to make an ‘our box’ (rectangular prism) with two layers.  
Clara and Lexie tried unsuccessfully to find the number of ‘blocks’ in this 3x4x2 cm ‘our box’ (notation from 
now on: 3x4x2 box).  Jesse asked: “How many on one face?” leant over, inspected, soundlessly moved his 
lips as though counting before confidently stating “24”.  Lexie organised the group to commence: “Okay so 
… we start out with a cube” and Jesse enthusiastically offered to make one: “… I can make a cube” [see 
Figure 1, Lines 90, 91, Column 6 (notation to be used: Fig. 1, L90, 91, C6)].  Jesse built a 2x2x2 cube then 
began to add blocks one by one to this [Fig. 1, L96, 98; C6].  He was unaware of activity around him [Fig. 1, 
element of C5: Unaware (U)] with for example, Clara’s comment [Fig. 1, L95, C6] and Mrs J’s presence and 
question [Fig. 1, L97-99, C6].  Jesse focused only on his own exploratory activity [see black arrows Fig. 1, 
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L93-105, C4].  His tentative statement at the end of this interval showed he wondered whether his goal was 
possible: “You can’t really make an actual cube [with 24 blocks]”.  His decision to persevere indicated he 
was still not sure: “[to himself] there must be a way to make a cube” [Fig. 1. C6, L105]. 
　　 Clara disagreed with Jesse’s statement that a cube could not be made: “Oh no I think you can” [Fig. 3, 
L106].  During the approximately 2 minutes that the class remained silent as RT suggested various possible 
foci for group reports [see Table 2, Column 1; Fig. 3, L107-113], Clara placed her 3x3x3 (27 block) cube in 
front of Jesse.  He examined it, counted various external features, attended only to the part of RT’s talk that 
fitted his focus [see Table 2, Column 1, Item 3]: 

… some people have been able to say- that one- that one works because it’s so many [blocks]- how are you doing 
that? How do you know how many are there? How are you working it out?

　　 After listening to his self-selected excerpt of RT’s talk [see Table 2; Fig. 3. L113, C6], Jesse removed 
and replaced several face layers of Clara’s cube (one by one).  He inspected and counted visible internal 
elements [Fig. 2a].  When RT finished, Jesse immediately stated: “Clara; there’s too many pieces there.  
that’s 26” [Fig. 3. L116], He displayed increased positive affect at the times when he exclaimed [Fig. 3. L116, 
129-130, C5]: “you can’t make it a cube”. 
　　 Jesse continued to manipulate his own blocks while responding to Lexie who asked for assistance in 
making a 24-block cube: “You need more pieces to make a cube” [Fig. 4, L131].  Jesse appeared unaware of 
interactions between Lexie and RT [Fig. 4, L133, 134, 142, 143] when Lexie asked RT for affirmation and 
was directed back to the task requirements instead.
　　 Jesse and Clara disagreed over whether there were 26 (Jesse) or 27 (Clara) blocks in Clara’s cube 
[Fig. 4, L137-139, 144-147].  Clara made another one by one count of the blocks in the cube [see Fig. 2b; 
Fig. 4, L144].  Jesse interrupted: “What’s three nines?”.  When Clara answered “27” Jesse exclaimed “oh 
yeah! I missed the middle one”.  He had developed insight into the internal structure of this cube [Fig. 4. 
L144-147].  He could see it was made up of layers.  It was unclear how he knew the number of little blocks 
in a particular layer at that time.  Did he recognise an array and the relevance of multiplication, or did he 
count them or remember his previous counting?

Jesse generalised his insight in Lesson 2.
　　 Interpretive Visual Displays have not been constructed for Lesson 2 Part 1 because only small excerpts 
have been selected to provide evidence of different investigations different students and groups undertook, 
and of Jess’s generalisation. 
　　 There was evidence that Jesse was more expert than his two group members with regard to cube 
structure by Lesson 2.  Evidence included the nature of Lexie’s frequent questions to other group members, 
and the different ways Jesse and Clara analysed the 27-block cube (Clara deconstructing it unsystematically 
[Figure 2b] whereas Jesse was aware of layers).  Lexie and Clara individually, searched for patterns related 
to rectangular prisms made from 24 blocks, probably focused by RT’s frequently made comment [e.g., Table 
2, Row 8]: “are you seeing any patterns …?” Jesse, on the other hand, worked individually, sometimes 
interacting with other group members as an expert other. 
　　 Jesse’s report to the class 47 minutes and 48 seconds [47:48] into Lesson 2 and his post-Lesson 2 
interview showed he had developed further mathematical ideas.  These included Recognizing factors were 
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involved, beginning to generalise the internal structure of the cubes to cubes with different numbers of 
blocks, and also beginning to generalise from the internal structure of cubes to the internal structure of 
rectangular prisms.  Jesse stated in his report to the class:

… there’s only … a few ways that you can make a cube- because you can make a cube with 27 blocks but not 24 
… you have to find the factors of- if you find the factors of 24 you can … make the blocks [boxes] … [it] is either 
eight by three or six by four- it can be … either way … [number in a layer by number of layers]

　　 To elicit clarification Mrs J reflected Jesse’s words back to him: “you did mention something in there 
Jesse something about you can’t make a cube out/” [Lesson 2, 51:04 sec].  Jesse cut off Mrs J’s talk in his 
eagerness to respond: “Yeah you can’t make a cube out of 24 blocks if you have to use 24” [51:12].  To elicit 
further complexity in the thinking Jesse had been doing, without requiring it, Mrs J posed her question in a 
non-confrontational way: “Are you able to explain that a little bit more?” [51:19].  Jesse gave a little more 
detail about his thinking: “… there’s two ways of making a cube - well there’s more but- you can make 
bigger cubes” [51:20].
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Figure 2b.  How Clara deconstructed her cube to count the blocks

Figure 2a.  Illustrations of Jesse’s actions as he analysed Clara’s cube
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RT’s Comments to Class Group Activity Relevant to Jesse

1. “… remember your reporter is reporting about- what have you 
found, how did you find it-“ 

2. “… what was your thinking- now what have you found?  How 
did you think it out?” 

Clara: [placed cube in front of Jesse, L112].  Jesse: 
[picked it up, examined it from various perspectives, 
pointed individually to blocks along edges of several 
faces, pointed one-by-one to blocks on one face, L113]

3 “I notice some people have been able to say- that one- that one 
works because it’s so many- how are you doing that? How do you 
know how many are there? How are you working it out?”

Jesse: [looked up, listened to RT, L113,]

4. “… once you have got a way that you are thinking about can 
you explain to the others why that way of thinking is helping 
you?”

Jesse: [returned focus to Clara’s cube, L113]

5. “… and it may be that somebody isn’t sure how they are 
thinking it out yet” 

Jesse: [pulled off and inspected a 3x3x1 face layer and 
replaced it, see Figure 2a, Steps 2, 3; Figure 3, L113, 
1:00:32]

6. “… but they are sort of starting to see some pattern” Jesse: removed a different 3x3x1 face layer, inspected 
both cross sections, replaced it, see Figure 2a, Step 4; 
Figure 3, L113] 

7. “… now different groups will report on different things- I am 
sure each group is not going to report on all of them- what have 
you found? what sort of thinking are you doing?” 

Jesse: [pulled off a different 3x3x1 face layer and 
inspected it quickly and replaced it, L113, 1:00:48] 

8. “Are you seeing any patterns? Why do you think the way you 
are thinking about it is working- how are you working it out? …”

Jesse: [pointed one by one to the blocks on one face as 
though counting L113] 

Table 2  Simultaneous activity of RT, Jesse, and Clara during RT’s talk.

　　 As Jesse had made 8-block and 27-block cubes in Lesson 1, his comments show he had developed some 
awareness that larger cubes can be made and had not yet considered a single block as a cube.  How much he 
knew about how to form these larger cubes is not evident in the data. 
　　 Jesse’s generalisation of this structure to the internal structure of rectangular prisms resulted from his 
synthesis of his ideas with the dynamic visual images generated by another group as they displayed vertical 
slices of a 24-block rectangular prism that was not a cube.

Jesse’s mathematical activity
　　 Jesse’s mathematical activity is now examined to identify whether it fits with flow conditions 
(Csikszentmihalyi & Csikszentmihalyi, 1992) during mathematical problem-solving (Williams, 2002a).  Is 
it autonomous, spontaneous, mathematically creative activity accompanied by high positive affect? 

Autonomous and spontaneous mathematical activity
　　 An unfamiliar mathematical complexity became apparent to Jesse when he had trouble making a cube 
with 24 blocks [Figure 1, L105].  The black arrows pointing backwards in the Interpretive Visual Displays 
Social Elements Column [Figures 1, 3, and 4: Column 4] show who Jesse responded to during Lesson 1, and 
when he focused only on his own activity.  In most instances, Jesse’s activity was in response to his own 
previous activity [black arrows pointing from Jesse back to Jesse’s previous activity].  His response to Lexie 
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was to try to make a cube as she suggested.  This occurred before Jesse’s spontaneous exploration commenced.
　　 Jesse responded to four external social elements once his spontaneous exploration commenced [Fig. 1, 
L105].  See Figures 3 and 4, Column 4.  These external Social Elements [SE] were:

1.	�Clara [Fig. 3, L106] queried Jesse’s finding [Fig. 1, L105] and placed a cube in front of him [Fig. 3, L112] 
2.	�Jesse attended only to a small part of RT’s ‘talk’, where she wondered how some groups worked out how many 

blocks in their ‘box’ [Fig. 3, L113]
3.	Clara queried Jesse’s finding of 26 blocks in her cube [Fig. 4, L139]
4.	Clara gave the answer to three nines when Jesse asked [Fig. 4, L146]

　　 Neither Lexie’s suggestion to make a cube (prior to Jesse’s spontaneous activity), nor the four external 
social elements identified during Jesse’s spontaneous exploratory activity in Lesson 1 contributed mathematically 
to Jesse’s insight into cube structure.  Although Lexie influenced what box Jesse tried to make, Jesse’s own 
activity focused his spontaneous activity ‘… there must be a way to make a cube’ [Fig. 1, L105].  Clara’s 
incorrect assertion that a 24-block cube could be made [Fig. 3, C4, Social Element Subcategory 3: Clara], 
and the 27-block cube she presented to justify this led to Jesse’s analysis of Clara’s cube.  He wanted to find 
the number of blocks within it, to justify that a 24-block cube could not be made.  It was Jesse’s decision to 
analyse the cube [Fig. 3, L113], influenced but not caused by Clara’s activity.
　　 There was no expectation that groups would focus on areas the RT drew attention to.  Jesse’s attention 
to one part only [Fig. 3, C4: Social Element Subcategory 2: Jesse] (how are people finding the number of 
blocks) was followed by his idiosyncratic internal analyses of Clara’s cube [see Fig. 2a and Fig. 3, L113] 
where he appeared to be trying to find a way to count the number of blocks within.  The decisions made were 
Jesse’s, influenced but not caused by Clara [see Fig. 3, SE Subcategory 3: Clara, and 2: Jesse]. 
　　 Although Clara queried Jesse’s answer of 26 [Fig. 4, L139, C4 Subcategory 3: Clara], Jesse had 
achieved his purpose, he knew there were more than 24 blocks needed to make that cube.  Even so, he 
checked his answer another way as indicated by his question to Clara “What’s three nines?” Clara’s answer 
[Fig. 4, C4, SE Subcategory 3: Clara] did not contribute new mathematical ideas.  It provided Jesse with a 
faster answer to the multiplication than he could have achieved more slowly himself, enabling him to retain 
his focus on checking his answer another way.  Clara was a non-expert other compared to Jesse in her 
understanding of cube structure, as demonstrated in her unsystematic deconstructing and counting of cube 
pieces [see Fig. 2b].  She did not contribute mathematically to Jesse’s insight into cube structure.  Thus, there 
was no external mathematical input to Jesse’s insight development.  Jesse’s activity was autonomous and 
spontaneous.

Creative mathematical activity accompanied by high positive affect
　　 As the complexity of Jesse’s thinking (cognitive activity) increased over time [see Figures 1, 3, and 4], 
his positive affective also increased [more elements occurring simultaneously in Columns 3 and 5].  Jesse 
confirmed his interest in his exploration in his interview: “I got caught in the 27 blocks square [cube] because 
… mmh … it’s interesting”.  As Jesse continued to try to make the 24-block cube without success, his 
engagement increased.  Initially, Jesse used mathematical actions he was already aware of (trial and error, 
building with blocks to construct a familiar object—a cube).  In doing so, his mathematical activity involved 
Recognizing (R), and Building-with (BW) familiar mathematical ideas.  Jesse displayed engagement by 
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participating in group activity with his eyes and his body directed towards the task [Figure 1, Column 5, 
L91-94: Ey, D, P].  He then also displayed evidence that he was unaware of what was happening around him 
[Figure 1, Column 5, L95-104: Ey, D, P, U. L95, 96: Clara’s talk and building actions; L97-99: Mrs J 
question and observation of group; L100-104: group discussion of who will report].  He then articulated his 
finding with emphases “You can’t really make an actual cube” and ‘self-talk’: “there must be a way to make 
a cube” [L105].  He displayed additional intensity of interest through emphases in his statements to the 
group: Jesse had started to realise that it may not be possible to make a cube. [Figure 1, L105: Ey, D, P, Ex].  
The tentative nature of the ideas he expressed are indicated by inclusion of the words ‘can’t really’, ‘actual 
cube’ and ‘must be a way’.  It is unclear what thought processes led to these tentative ideas.  Evidence of 
whether Jesse had started to build an understanding of why this was so was not available.  Jesse was probably 
beginning to undertake novel BW and may also have commenced Constructing (C).  Question marks in the 
C cell of Column 3 in Figures 1, 3, and 4 represent such uncertainty in interpretation. 
　　 As Jesse twisted the cube Clara presented to him, and examined it, he undertook simple BW as he 
counted external features of the cube [Fig. 3, L113].  Novel BW occurred when he deconstructed the cube 
[Figures 2a; Fig. 3, L113] by taking off and replacing various faces after counting features within.  This more 
complex BW involved simultaneously considering internal elements of the cube and numerical features of 
these (synthetic-analyses, see Williams (2007)).  Jesse undertook even more complex BW (evaluative-
analysis) when he made a judgment: “There’s too many pieces there” [Fig. 4, L116].  Jesse articulated his 
findings with emphases each time he reached a new realisation [Fig. 4, Column 5, L116, 129: Fig. 4, L147 
Ey, D, P, Ex].  Jesse slowly built his own 27-block cube (layer by layer) after this, inspecting it closely before 
adding the final layer [Fig. 4, L124].  As his thinking became more complex, his positive affect increased 
[Fig. 4, Columns 3, 5].  Jesse was unaware of what was happening around him [Fig. 4, Column 5, U] as he 
checked the reasonableness of his results [Figure 4, BW: evaluative-analysis], latched to the mathematical 
fact Clara provided, and developed his insight into cube structure [Fig. 4, C3, C, Constructing] [Fig. 4, L146, 
147, C5: Ey, D, U, P, L, Ex].  In judging whether there were 26 or 27 blocks in the cube Jesse asked Clara: 
“What’s three nines?” [L145], indicating he was considering three layers with nine blocks in each (novel 
BW).  It appeared that he initially counted blocks on the outside rather than considered layers (to get 26 
blocks) BW, because he exclaimed “oh yeah! I missed the middle one” (C) [L147].  Jesse synthesised 
numerical operations (counting numbers of blocks on a face, on layers, on edges) with the cube’s physical 
structure (one in the middle) as he developed insight into the structure of the cube and why the initial answers 
(26, 27) differed by one [Fig. 4, L139, 144-147, C3]. 

DISCUSSION

Jesse experienced ‘optimal learning conditions’: ‘flow’ (Csikszentmihalyi, 1992)
Jesse’s mathematical activity: 

•	 was autonomous (Csikszentmihalyi, 1992; deCharms, 1976)
•	 was focused by a spontaneously set mathematical challenge almost out of reach (Csikszentmihalyi, 1992) 
•	 involved creative development of mathematical insight (Dreyfus et al., 2001; Williams, 2002a), and 
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•	 was accompanied by high positive affect (Csikszentmihalyi, 1992; Williams, 2002a).

　　 Jesse experienced flow—optimal learning conditions (Csikszentmihalyi & Csikszentmihalyi, 1992).  
The creative development of mathematical insight during flow did occur.  The mathematical ideas that 
contributed to the insight were internally sourced.  Even so, the development of this insight did not occur 
without external influences. 

Scaffolding Actions
　　 Scaffolding creative mathematical activity, for the purpose of this paper is defined as:

enabling the student to develop mathematical insights that would be beyond his unassisted effort, where the 
scaffolding must be such that when removed the mathematical construction stands alone.  Thus, mathematical 
input from external sources does not occur. 

　　 What Jesse knew about cube structure and was able to use by the end of Lesson 1, was not known to 
him before the lesson.  Jesse developed these ideas without mathematical input from external sources, but 
this development was not unassisted.

Scaffolding actions of external sources: 
　1.	� Non-action [Mrs J not requiring response to question to group in Lesson 1, sustained autonomy] 

[Fig. 1, L97, 99, C6]
　2.	� Deflected [RT directed Lexie back to task, avoided expert other role] [Figure 4, L133-136]
　3.	� Reflected Back [Mrs J repeated Jesse’s report comment (Lesson 2) to elicit elaboration]
　4.	� Elicited [In a non-confrontational way, Mrs J asked Jesse to explain further in his report which led to 

further elaboration]
　5.	� Multiple Attentions [without obligation to respond [RT, Table 2] to different exploratory directions]
　6.	� Implicit Indicating Task Is Possible [Table 2]: “How are [people] doing that? How do you know how 

many are there?]
　7.	� Implicit Licence to Pursue Idiosyncratic Ideas [Table 2] ‘can you explain to the others why the way 

you are thinking about it is helping you’
　8.	� Asked Questions [to elicit, sustain, and / or increase the complexity of creative mathematical thinking].
　9.	� Group Organising [Lexie allocated making of the cube to Jesse]
　10.	� Non-expert querying / incorrectly justifying [e.g., Clara’s incorrect cube]
　　 These scaffolding actions arise from sources external to the exploring student and do not contain 
mathematics.  They include teacher actions that are the antithesis of actions undertaken by Vygotsky’s (1978) 
expert other who demonstrates, instructs, shows, starts the task, hints, adds ideas, and asks leading questions 
(van der Veer & Valsiner, 1994, p. 337). 

Features of E2L that Scaffolded Creative Mathematical Activity 
　1.	� Accessible task [various complexities to pursue, different representations to explore, opportunities for 

complex mathematical thinking]
　2.	� Reporting [e.g., Jesse synthesises own ideas with those of another group: generalises cubic structure 

to rectangular prism structure more generally]
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　3.	� Cycles of group work and reporting: [progressive developing of more complex thinking] [e.g., Jesse’s 
insight from Lesson 1 contributing to his generalising in Lesson 2]

　4.	� Disallowing querying and contradicting of reporters [to keep them emotionally safe during reports] 
[evidenced by its non-appearance] 

　　 Teachers and students influenced Jesse’s development of insight but did not contribute mathematically 
to his new ideas.  Scaffolding actions set up by the teacher before the task include many features other 
researchers have identified as scaffolds (e.g., discourse Wegerif, 2006), whole class scaffolding (Smit et al., 
2013) and group collaboration (Fernández et al., 2001)).  The present study includes microanalyses that 
extend across various of these scaffolding structures rather than focus particularly within each (e.g., discourse, 
questioning, group collaboration).  An illustration is scaffolding that occurred across several forums of 
discourse that provided multiple opportunities (that vary in nature) that contribute “… cultural tools … 
gradually appropriated by the pupils as cognitive means for regulating their personal mathematical activity” 
(Ohtani, 2007, p. 40).  Jesse’s generalisations developed gradually across two lessons through group discourse, 
teacher-whole class discourse, questioning and discourse between reporter and whole class including 
teachers. 
　　 Teacher scaffolding actions that elicited clarification, elaboration, and justification encouraged 
communication of students’ decision making.  These scaffolding actions were not articulated in demanding 
ways but rather wondering, ways that gave Jesse (and others) the opportunity to respond or not.  Illustrations 
of such actions were reflecting words back: “you did mention something in there Jesse something about you 
can’t make a cube out”; asking for further explanation: “Are you able to explain that a little bit more?” Such 
scaffolding sustained dialogue about ideas (Bakhtin 1986 in Wegerif 2006).  

Links Between Bruner’s Scaffolding and Creative Mathematical Thinking
　　 Various of the scaffolding actions identified by Bruner (1986) became internal actions controlled by 
Jesse.  He focused attention, controlled the degree of complexity, and in conjunction with the task nature, 
through his analyses made his solution visible (before he understood or recognised it), when he examined 
Clara’s cube.  He made the internal structure visible but at that time did not recognise how he could use it to 
quickly find the number of blocks in the cube. 
　　 The role of the student who creatively developed new mathematical ideas through E2L in this study 
differs to: a) the role of students learning in interaction with an expert other, and b) students learning through 
Japanese Lesson Study.  These three different pedagogical approaches differ in the degree of control the 
teacher has over student mathematics learning.  With a ‘transmission’ approach to mathematics learning, the 
teacher is the mathematical authority who presents the mathematics and takes the role of expert other—
controlling the learning process.  Teachers within Japanese Lesson Study guide the learning process.  With 
open-ended problems they commence by eliciting student ideas.  There are opportunities in this phase of the 
sequence for students to experience surprise as ideas are challenged, and /or pleasure when a well-argued 
idea is put forward.  The teacher takes control of the mathematical ideas developed, drawing attention to 
those that fit the intended curriculum goal, making links within and across lessons, and summarising what 
has been found.  Thus, part of student work with open-ended tasks is autonomous and part teacher controlled.  
Within the Engaged to Learn Approach the students are the proprietors of the classroom and the strength of 
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the mathematical arguments put forward by the students are the mathematical authority students refer to.  
Although the role of the teacher could appear to an outsider to be almost non-existent, this role is complex 
as indicated by the subtle nature of the scaffolding actions identified. 

CONCLUSIONS

　　 Findings from this one case are insufficient for generalisation.  Further research of approaches that 
promote creative mathematical activity during flow are required to confirm the generalisability of these 
scaffolding actions and identify other relevant scaffolding.  This single case is sufficient though to demonstrate 
that scaffolding of creative mathematical activity is possible, and to illuminate the nature of various such 
scaffolding actions that occurred.  Teacher actions that scaffolded but did not cause exploratory mathematical 
activity served various purposes including to: maintain autonomy [non-action, drawing multiple attentions, 
implicit licence to pursue idiosyncratic ideas], encourage deeper thinking [reflecting back, eliciting, 
questioning, implicit suggesting the task is possible, and implicit licence to pursue idiosyncratic ideas], 
retain emotional safety of students [non-confrontational questioning, reporting rule that reporter cannot be 
contradicted at the board] and enable student scaffolding [group member allocation of tasks, group member 
flawed challenge to ideas].  Differentiating between internally sourced and externally sourced mathematical 
ideas is crucial to teachers developing expertise in scaffolding creative mathematical activity.
　　 These findings inform teacher actions, and pedagogy intended to deepen mathematical understandings 
whilst increasing student enjoyment of mathematics.  They show close links between subtle teacher actions 
that sustain exploratory activity, and actions associated with implementing an accessible conceptual task in 
an environment which promotes students’ autonomous development of mathematical ideas during flow in a 
safe learning environment.  The enabling of students’ idiosyncratic explorations that can develop mathematical 
ideas within, peripheral to, or beyond the mathematics expected to emerge from the task requires a rethinking 
of how teachers can monitor curriculum coverage.  In addition, such scaffolding requires teacher faith in 
students’ ability to think mathematically without explicit teacher guidance.  Further research is required to 
find how to support teachers developing such expertise.
　　 This study contributes methodologically to study of students’ creative mathematical thinking in class, 
and social influences upon this, by illustrating a tool for simultaneously analysing these constructs to identify 
relationships between them.  This Interpretive Visual Display played a crucial role in identifying flow situations, 
and in identifying external social elements that influenced but did not cause creative mathematical activity. 
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Glossary of Terms
Term Literature Meaning

Autonomous student 
activity

(deCharms, 1976)
(Rotter, 1966)
(Csikszentmihalyi & 
Csikszentmihalyi, 
1992)

‘Autonomous’ activity, is captured by the activity of “Origins” 
(deCharms, 1976; Rotter, 1966).  Origins locate control internally while 
for “Pawns” control is located externally (Rotter, 1966).  Autonomous 
mathematical activity is controlled by the student who makes decisions 
about what mathematics to explore, what mathematics is relevant to this 
exploration, how to use it, and whether or not mathematics generated is 
reasonable.

Expert others (Vygotsky, 1978, 
p. 87) 

An expert other, in working with a child, stimulates activity in a region 
associated with the child’s “mental development prospectively” [Zone of 
Proximal Development] to extend student learning by for example, 
showing, instructing, stating the task, and hinting.

Creative mathematical 
thinking

(Williams, 2007) Spontaneous abstracting, the development of mathematical insight 
through autiniomous and spontaneous student activity.

Flow Csikszentmihalyi 
(1992)

Flow is a state in which creative activity is accompanied by high positive 
affect.  During flow people lose of all sense of time, self, and the world 
around as all their energies are focused on the task at hand. 

High positive affect Csikszentmihalyi 
(1992)

Feelings of intensity, surprise, and pleasure during flow, indicated by the 
loss of all sense of time, self, and the world around as energies focus on 
the task at hand. 

Scaffolding (Wood et al., 1976, 
p. 90)

A metaphor for support to learning that enables the “child or novice to 
solve a problem, carry out a task or achieve a goal which would be 
beyond his unassisted efforts”

Scaffolding Creative 
Mathematical Activity

Williams, this 
publication

“scaffolding is enabling the student to develop mathematical insights that 
would be beyond his unassisted effort, where the scaffold must be such 
that when removed the mathematical construction remains standing: 
mathematical input is not provided”.

Spontaneity (Steffe & Thompson, 
2000)

Types of actions not caused by an external source (even though they may 
be influenced by external sources).  The student self-regulates when 
interacting with these external sources in ways consistent with the 
student’s own frame of reference.
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